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The retinoblastoma protein and p53 are both cell-cycle
regulators and are, directly or indirectly, inactivated in the
majority of human tumors. Recent studies have provided new
mechanistic insights into how these proteins regulate cell growth
in response to various intracellular and extracellular signals. 
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Abbreviations
APC anaphase promoting complex/cyclosome
ATM ataxia telangiectasia mutated
ATR ATM related
Cdk cyclin-dependent kinase
HDAC histone deactylase
HPV human papilloma virus
RB retinoblastoma 
TSA trichostatin A

Introduction
The neoplastic phenotype arises, at least in part, as a result
of deregulated mitotic cell cycle control. Functional inacti-
vation of negative regulators of the cell cycle will contribute
to deregulated cell cycle control and, thereby, to cellular
transformation. Two gene products, the retinoblastoma
(RB) protein and p53 tumor suppressor proteins, have
served as paradigms for the study of negative regulators of
the cell cycle [1–4]. These proteins are termed ‘tumor sup-
pressors’ because their functional inactivation (often
through genetic mutation) contributes to the development
of cancer in a variety of different tissues. A number of
lessons have been learned from their study. Firstly, each of
these tumor suppressor proteins is a component of a signal
transduction pathway (see Figure 1). Other components of
these signalling pathways are also mutated in human can-
cers, giving rise to the notion of the ‘pRB pathway’ and the
‘p53 pathway’. Inactivation of both pathways is a common,
and possibly universal, event during human carcinogenesis.
Secondly, pRB and p53 control cellular proliferation in
response to distinct events. The pRB pathway responds, in
large part, to the presence or absence of mitogenic signals
whereas the p53 pathway responds to genotoxic insults and
the activation of certain oncogenes. Thirdly, pRB and p53
are both multifunctional and, in addition to regulating the
cell cycle, also regulate other processes that affect cell pro-
liferation, such as apoptosis and differentiation. Indeed, the
reason why these proteins are so commonly mutated in
human cancer may be because they are integrators of

diverse signals that ultimately govern the ability of cells to
grow in a proper temporally and spatially controlled man-
ner. Examples of other tumor suppressor pathways that
regulate the cell cycle are also emerging (see below). 

The retinoblastoma protein pathway
Individuals that inherit a mutant copy of the retinoblas-
toma tumor suppressor gene (RB) are predisposed to the
development of childhood retinoblastoma and, in later life,
osteosarcoma. Functional inactivation of pRB is also asso-
ciated with a number of other sporadic malignancies [5].
pRB plays out its role as a tumor suppressor through its
ability to inhibit the mitotic cell cycle, specifically in late
G1 phase, and also to promote terminal differentiation.
pRB inhibits progression through late G1  phase, at least in
part, by binding to E2F transcription family members,
thereby repressing the transcription of E2F target genes.
Progressive phosphorylation of pRB in mid to late G1
phase by one or more cyclin-dependent kinases (Cdks)
(cyclin D1/2/3–cdk4, cyclin E–cdk2 and cyclin A–cdk2)
causes dissociation of pRB–E2F complexes, thus allowing
expression of E2F target genes and entry into S phase.
The activity of the cdks is, in turn, regulated through a
number of mechanisms including post-translational modi-
fication and complex formation with proteins known as
Cdk inhibitors (CDKIs). These include the p21-like
CDKIs p21CIP1, p27KIP1, p57KIP2 and the p16-like CDKIs
p16INK4a, p15INK4b, p18INK4c and p19INK4d. 

Cyclin D1–cdk4 kinase activity is elevated in a number of
different human tumors either through overproduction of
cyclin D1 or through mutation of cdk4 so as to make it insen-
sitive to the inhibitory effects of p16INK4a. Furthermore,
p16INK4a is itself a tumor suppressor protein and is common-
ly mutated in certain cancers. This pathway of oncogenes
and tumor suppressors has been termed the pRB pathway [5]
(see Figure 1a). A number of key advances have recently
been made in our understanding of this pathway.

The retinoblastoma protein crystal structure
The pRB ‘pocket’, comprised of subdomains A and B and
the intervening spacer, is thought to be the major function-
al domain of pRB. An intact pocket, as well as much of the
adjacent carboxyl terminus, is needed for pRB to bind E2F.
Pavletich and coworkers solved the X-ray crystallographic
structure of subdomains A and B complexed to the LxCxE
(in the single letter code for amino acids, where x is any
amino acid)-containing peptide of the human papilloma
virus (HPV) E7 oncoprotein [6••]. The LxCxE motif is con-
served in a number of different viral oncoproteins, where it
is required for binding to pRB and cellular transformation,
and in several cellular pRB-binding proteins. Consistent
with the crystal structure of the isolated subdomain A and
the predictions of Kouzarides and coworkers, each of the A
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and B subdomains constitutes a five-helix ‘cyclin fold’, of
the type previously identified in cyclin A and the basal

transcription factor TFIIB [7,8]. The LxCxE peptide of
HPV E7 binds within a shallow groove of the cyclin fold of
subdomain B. The amino acids lining this groove are
among the most highly conserved between pRB of differ-
ent species and the related proteins, p107 and p130. A
second cluster of highly conserved amino acids is present at
the interface between subdomains A and B and this is pro-
posed to be the binding site for E2F family members. This
is consistent with earlier mutagenesis studies which
showed that E2Fs bind to a site on pRB which is distinct
from the site which interacts with LxCxE-containing pro-
teins [9,10]. Potentially noteworthy in this regard is the
finding that the pRB A and B domains, when produced as
separate polypeptides, can form dimers that reconstitute an
active pRB pocket [11]. A number of naturally occurring,
inactivating point mutations in pRB map to subdomain B
and the interface between subdomains A and B. 

Different cyclin-dependent kinases phosphorylate the
retinoblastoma protein on different sites
A number of different cdks are active at the time in the cell
cycle when pRB is progressively phosphorylated. These
include cyclin D1/2/3–cdk4, cyclin E–cdk2 and cyclin
A–cdk2. Moreover, pRB is phosphorylated on multiple
sites in vivo and a number of studies have demonstrated
that different cdks preferentially phosphorylate pRB on
distinct sites. For example, cyclin A–cdk2 preferentially
phosphorylates Thr821 and cyclin D–cdk4 Ser780 and
Ser795 [12,13••,14••]. These results, together with those of
Knudsen et al. which suggest that phosphorylation of pRB
on different sites regulates binding to distinct effector pro-
teins [15], raise the possibility that different Cdks might
regulate different pRB functions. Consistent with this
notion, Lundberg et al. showed that functional inactivation
of pRB required phosphorylation by both cdk4 and cdk2
[16•] and Knudsen et al. suggested that pRB governs pas-
sage through a point in G1 termed the restriction point and
the G1/S boundary through distinct phosphorylation sensi-
tive mechanisms [17•].

Transcriptional repression by retinoblastoma
protein–E2F and HDAC1
When bound to DNA, E2F–pRB complexes function as
active repressors of transcription [18]. A number of lines of
evidence suggest that relief of this repression is responsible
for the timely activation of E2F target genes at the G1/S
transition. Histone deacetylases (HDACs) have been
shown to mediate the repressor activity of a number of dif-
ferent transcriptional repressors [19]. Three groups showed
that pRB binds to HDAC1, suggesting that an
E2F–pRB–HDAC1 complex might be responsible for tran-
scriptional repression of E2F target genes [20••–22••].
Consistent with this idea, transcriptional repression by pRB
was relieved by the HDAC1 inhibitor trichostatin A (TSA).
Luo et al., however, noted that the ability of TSA to negate
transcriptional repression by pRB was promoter dependent
[22••]. This suggests, that pRB might employ HDAC-inde-
pendent mechanisms to repress transcription as well. In this
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Figure 1

(a) The pRB pathway regulates the G1/S transition and differentiation.
The figure illustrates the cell cycle control proteins that form the ‘core’
of the pRB pathway that is functionally inactivated in many, if not all,
human cancers. Inactivation of the pathway commonly results from
perturbation of p16INK4a, Cyclin D1, Cdk4 or pRB. E2F family
members bind to DNA as heterodimers with DP1 or DP2. Of note,
E2F/DP family members are not commonly mutated in human cancers,
suggesting that there is significant divergence of the pathway
downstream of pRB and/or that other key pRB effector proteins, that
are commonly mutated in human cancer, remain to be identified. These
possibilities are indicated by ‘others’. (b) The p53 pathway regulates
cell cycle progression and apoptosis. The figure illustrates the
upstream pathways that are responsible for activation of p53 in
response to DNA damage and activation of oncogenes and some of
the downstream genes that mediate the p53 dependent G1/S and
G2/M arrests and apoptosis. In addition to p53 itself, a number of the
upstream regulators, such as mdm2, p19ARF, the oncogenes
responsible for activation of p19ARF (see text) and ATM, are mutated
in human cancer. Due to space limitations, induction of apoptosis by
Bax and the ‘Redox genes’ are not discussed further in the text (see
[66••] and references therein for further details). 
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regard, it was earlier shown that pRB could bind to adjacent
transcriptional activation domains when tethered to DNA
and can also affect DNA bending [23, 24]. 

Retinoblastoma protein and induction of differentiation
The pRB is required for differentiation in the developing
mouse embryo and in a number of in vitro differentiation sys-
tems [25]. For example, pRB is required for in vitro
differentiation of adipocytes and muscle. Adipocyte differen-
tiation  appears to involve a direct interaction between pRB
and the transcription factor, CCAAT enhancer binding pro-
tein (C/EBP) [26], and muscle differentiation requires a
potentiation of activity of the muscle specific transcription
factor, MyoD, in a manner that does not require a physical
interaction [27–29]. One possibility, among several, is that
pRB serves to sequestor a cellular inhibitor of differentation.
Another likely regulator of pRB-mediated differentiation  is
HBP-1 [30]. HBP-1 contains two consensus pRB-binding
motifs and is upregulated during differentation. One func-
tion of HBP-1 may be to transcriptionally silence the N-myc
gene upon cell cycle withdrawal.

The relationship between pRB-mediated differentiation
and cell cycle control, and the relative contributions of these
two processes to tumor suppression by pRB, has been
unclear. Sellers et al. [31•] identified pRB pocket mutants
that were able to promote differentiation, but were unable
to induce an acute G1/S block following their reintroduction
into pRB-defective tumor cells. In these assays, the ability
of pRB to induce a G1/S growth arrest correlated with its
ability to bind to E2F and repress transcription, whereas
induction of differentiation did not. Importantly, two pRB
mutants, pRB∆4 and pRBTry661, that are associated with a
low risk of cancer were, like the products of high risk, null
RB alleles, unable to bind to E2F and consequently were
unable to induce an acute G1/S block. Unlike the high risk
mutants, however, they did retain the ability to promote dif-
ferentiation. This suggests that cell cycle control and
differentiation are separable functions of pRB and that both
contribute independently to tumor suppression. 

The p53 pathway
Inheritance of a mutant allele of the p53 tumor suppressor
gene is the cause of Li-Fraumeni syndrome which is charac-
terized by predisposition to a range of cancers. Functional
inactivation of p53 is also associated with sporadic tumors [2].
The tumor suppressor activity of p53 stems from its ability to
both inhibit the mitotic cell cycle and promote apoptosis
(Figure 1b). In response to DNA damage or activation of
oncogenes, the p53 protein is post-translationally stabilized
and can consequently initiate cell cycle arrest at either the
G1/S or G2/M transitions. Induction of a G1/S block by p53 is
due, at least partly, to its ability to transcriptionally activate
the p21CIP1 gene. The resulting elevated levels of p21CIP1

protein inhibit the activity of G1 Cdks, thereby bringing
about a growth arrest in late G1. Until recently, relatively lit-
tle was known concerning the basis for the p53 dependent
G2/M cell cycle arrest and mechanisms of activation of p53. 

Regulation of p53 stability by Mdm2
Activation of p53 by oncogenes or DNA damage is associ-
ated with post-translational stabilization of the protein. The
demonstration that mdm2, a known p53 binding protein
and an inhibitor of p53-dependent transactivation, is able to
promote the degradation of p53 suggested that stabilization
of p53 might result, at least in part, from inhibition of
mdm2 activity [32••,33••]. Support for this notion has sub-
sequently come from other studies (see below). 

Activation of p53 by oncogenes
Certain oncogenes, including c-myc, E2F1, and E1A, stim-
ulate p53-dependent apoptosis [34–38]. Recently, it was
shown that such oncogenes increase expression of p19ARF

(a protein product derived from an overlapping but an
alternative reading frame of p16INK4a) [39], thereby initiat-
ing a cascade of events that culminates in the stabilization
and activation of p53 [40••–43••] (Figure 1b). Activation of
p53 in this setting is strictly dependent upon p19ARF

whereas inhibition of cell growth by p19ARF requires p53
[44••]. How p19ARF activates p53 is not precisely clear but
is likely to involve its ability to bind to mdm2 and, under
certain conditions, to p53 itself [45]. In the simplest model,
p19ARF prevents mdm2 from targeting p53 for degradation
and from masking the p53 transactivation domain.

Activation of p53 by DNA damage
Stabilization of p53 in response to DNA damage does not
require p19ARF but instead involves the ataxia  telangiec-
tasia mutated (ATM) protein kinase [44••,46]. The ATM
gene is mutated in the hereditary cancer syndrome ataxia
telangiectasia [47]. In response to DNA damage, the amino
terminus of p53 becomes phosphorylated [48••,49••]. In
ATM–/– cells, phosphorylation and stabilization of p53 in
response to ionizing radiation are delayed [46,48••].
Conceivably, phosphorylation of p53 and/or mdm2 pre-
vents the degradation of p53 by mdm2. 

A protein related to ATM, DNA-dependent protein kinase
(DNA-PK), phosphorylates p53 on a site, Ser15, that is
phosphorylated in vivo in response to DNA damage
[48••,49••]. Moreover, DNA-PK is required for the DNA-
damage-induced increase in p53 DNA-binding and
transcriptional activity [50••]. Interestingly, stabilization of
p53 appears to be normal in DNA-PK–/– cells. Thus, it
seems likely that in response to DNA damage the kinases
ATM and DNA-PK, and perhaps others, cooperate to fully
stabilize and activate p53 (Figure 1b). 

The p53 dependent G2/M arrest
Hermeking et al. identified the protein 14.3.3σ as a tran-
scriptional target gene of p53 that is likely to mediate, at
least in part, the p53-dependent G2/M arrest in response to
DNA damage [51••]. The ability of 14.3.3σ to induce a
G2/M cell cycle arrest is due to its ability to bind to, and
probably sequester in the cytoplasm, the cdc25C phos-
phatase, an activator of the mitotic kinase cyclin B–cdc2
[52•–54•]. Interestingly, 14.3.3 proteins bind only to
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cdc25C that is phosphorylated on Ser216 by the DNA-
damage-activated kinase, chk1 (Figure 2). 

In Schizosaccharomyces pombe chk1 is activated by DNA
damage in a manner dependent upon the checkpoint gene,
Rad3 [55]. Rad3 is homologous to the ATM kinase and
even more closely related to another kinase, ATM related
(ATR) [56,57]. Since ATM or ATR might also be partly
responsible for the DNA damage dependent activation of
p53 (see above), DNA damage might induce a G2/M arrest
through the coordinated chk1-dependent phosphorylation
of cdc25C and the p53-dependent increase in expression of
14.3.3σ, an inhibitor of phosphorylated cdc25C (Figure 2). 

Novel p53 family members
Two mammalian proteins, p73 and p51, with significant
sequence homology to p53 have recently been identified
[58••–61••]. Both p73 and p51 can bind to canonical p53
DNA binding sites, activate transcription and induce
apoptosis when overproduced. Preliminary data suggest
that these proteins, unlike p53, are rarely mutated in
human cancers. This observation suggests that p51 and
p73, under physiological conditions, cannot fully compen-
sate for p53 loss in the tissues examined to date.
Alternatively, these genes may be silenced epigenetically.

Interactions between the retinoblastoma
protein and p53 pathways
The pRB and p53 pathways interact in at least three ways.
Firstly, the p53 dependent G1/S cell cycle arrest is likely to
result, at least in part, from the transcriptional induction of

p21CIP1 and the consequent inhibition of the G1 Cdks.
Inhibition of the G1 Cdks converts pRB into the
hypophosphorylated growth suppressive form. It is impor-
tant to note, however, that induction of a G1/S block by
p21-like CDKIs, in contrast to p16-like CDKIs, does not
require the presence of functional pRB. 

Secondly, the p53 pathway protects against deregulation of
the pRB pathway (Figure 3). Specifically, functional inac-
tivation of pRB results in deregulated E2F activity which,
in turn, results in induction of p19ARF and p53-dependent
apoptosis [36,40••]. This may explain why many human
tumors in which the pRB pathway is altered also contain
mutations affecting the p53 pathway.

Thirdly, and very perplexingly, a single genetic locus
encodes two different proteins, p16INK4a and p19ARF, that
negatively regulate the pRB and p53 pathways respective-
ly. In view of the importance of the pRB and p53 pathways
to cell growth control, such an arrangement would appear
to be disadvantageous. The importance of this locus has
been established using mouse knockouts. Mice lacking
only p19ARF develop tumors at high frequency and the
spectrum of tumors is similar to that previously ascribed to
loss of p16INK4a [44••,62]. Whether the tumors originally
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Figure 2

Coordination of the DNA damage dependent G2/M arrest. Activation
of the ATM and/or ATM related kinase (ATR) by DNA damage results,
directly or indirectly, in activation of p53 and the kinase chk1. p53
transcriptionally activates 14.3.3σ and chk1 phosphorylates cdc25C
on Ser216. Binding of 14.3.3σ proteins to phosphorylated cdc25C
results in functional inactivation of cdc25C, through a mechanism that
is not entirely clear but which may involve sequestration in the
cytoplasm. Inactivation of cdc25C inhibits the G2/M transition by
preventing the dephosphorylation and activation of cdc2–cyclin B. 
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Figure 3

Interactions between the pRB and p53 pathways. Functional
inactivation of the pRB pathway results in deregulated E2F/DP activity.
This has been known for a number of years to result in stimulation of
DNA synthesis and p53 dependent apoptosis. It seems that p53
dependent apoptosis results from activation of p19ARF which,
indirectly, activates p53. p53-dependent Myc induced apoptosis also
depends upon the p19ARF pathway. 
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described in p16INK4a knockout mice were actually due to
inadvertent disruption of p19ARF or whether loss of p19ARF

and loss of p16INK4a give rise to  similar phenotypes is an
issue that remains to be resolved. 

The spindle assembly checkpoint pathway
The premature onset of mitotic anaphase prior to the
proper attachment of all of the chromosomes to the mitot-
ic spindle would, presumably, result in the missegregation
of chromosomes between the daughter cells. Such mis-
segregation might be lethal or contribute to genomic
instability and the genesis of cancer. Therefore, a check-
point exists to ensure that all of the chromosomes are
properly attached to the mitotic spindle before the onset
of anaphase [63]. 

Similar to the pRB and p53 pathways, this checkpoint
appears to consist of a number of gene products acting in a
linear pathway. In yeast, in the presence of an unattached
kinetochore, the Mad, Bub and Mps1 proteins act to block
the onset of anaphase by inhibition of the anaphase pro-
moting complex/cytosome (APC/C) (Figure 4). Recently,
the human homologue of at least one of these proteins,
hsBUB1, has been shown to be mutated in two colorectal
tumors [64••]. Furthermore, the hsMAD1 protein may be
a cellular target of the human T-cell leukemia virus 1
(HTLV-1) oncoprotein, Tax [65••]. Thus, perturbation or
mutation of the checkpoint elements that negatively regu-
late the onset of anaphase might contribute to the
development of cancer. 

Conclusion
This review has emphasized the notion that both the pRB
and p53 tumor suppressor proteins both fall within signal
transduction pathways that each consist of a number of
oncogenes and tumor suppressor genes. We have also high-
lighted the possibility of at least one other such pathway,
the spindle assembly checkpoint pathway that is operative
at the metaphase-anaphase transition. Major questions for
the future are to determine how other known tumor sup-
pressor proteins, such as BRCA1 and WT1, fit into these or
similar pathways and to determine why some components
of these pathways, such as p21CIP1 in the pRB pathway, are
not commonly mutated in human cancer. 

It has been apparent for some time that pRB is a multi-
functional protein and probably binds to multiple effector
proteins simultaneously. It seems likely that different pRB
binding proteins mediate different pRB functions, such as
induction of differentiation and the block to entry into S
phase. A major challenge is to dissect the causal relation-
ships between pRB biological activities, pRB effector
proteins and the multiple cdks. 

Much progress has been made recently in our under-
standing of the p53 pathway. Many questions remain,
however. For example, how does p19ARF discriminate
between physiological and pathological activation of

proto-oncogenes? How exactly do ATM, DNA-PK and
other kinases cooperate to activate p53 and how are they
themselves activated? 

For both p53 and pRB, what are the relative contributions
of their different biological activities, for example induc-
tion of cell cycle arrest and apoptosis in the case of p53, to
the their tumor suppression function? Finally, might dys-
regulation of mitotic cell cycle control be exploited to treat
cancer in humans?
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